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Abstract

We present calculations of the intrinsic vacancy and interstitial diffusivities, DV and DI, in silicon using order(N) tight-binding molecular

dynamics simulations. Vacancy diffusion was found to occur rapidly, with a diffusivity of around 10ÿ4 cm2/s in the temperature range 900±

12008C. Interstitial diffusion was found to be a factor of 10±100 times slower than vacancy diffusion, being on the order of 10ÿ5 cm2/s for

the same temperature range. These diffusivities have the same order of magnitude as previous molecular dynamics calculations performed

with both classical and Car-Parrinello models. The interstitial diffusion was found to occur via two different paths, one involving motion of

a single interstitial down the open (110) channels in the lattice, and another involving an intermediate h110i split interstitial which

facilitates the interstitial crossing from one (110) channel to another. Within the tight-binding model we use, the split interstitial path is

more important than drift of a single interstitial at higher temperatures (here, above around 10008C). The reverse is true below this

temperature, with few, if any, formations of split interstitials and a diffusion dominated by traversal down the open channels of the lattice.

New LDA data shows that the energetic advantage of the split interstitial over the tetrahedral interstitial is smaller than previously

calculated, lending credence to the tight-binding results. The split interstitials were found to be relatively long-lived (in some cases,

lifetimes in excess of 15 ps), even in a potential that favors tetrahedral interstitial formation. In order to perform these calculations, we

developed a constant Nelec version of the forces in the Goedecker and Colombo O(N) tight-binding algorithm originally written for systems

with a constant chemical potential. Omission of this correction can lead to errors approaching 40% in the forces. # 1999 Elsevier Science

S.A. All rights reserved.
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1. Introduction

Atomic diffusion of defects is important in determining

the equilibrium, transport, and kinetic properties of materi-

als, especially when processed at high temperatures [1,2]. In

silicon, intrinsic defects control the migration of impurities

and dopant atoms. Understanding the detailed kinetics of

these diffusional processes is critical for the control and

fabrication of modern electronic devices. Indeed control of

dopant atom diffusion is a fundamental limitation for the

processing of semiconductor devices, ultimately controlling

the sizes of features that can be created under typical

processing temperatures [3]. In addition, as the scale of

the structures in electronic devices approaches the atomic

level (0.10 mm is the current SIA Roadmap goal for feature

sizes), it becomes increasingly important to understand the

atomic-scale fundamentals of diffusion. Aside from the

interest in diffusion fundamentals, knowledge of quantities

such as diffusivities and migration energies is important as

inputs to continuum modeling packages such as SUPREM

[4] and particularly to newer simulation tools such as

Stanford's PDE solver ALAMODE [5].

Experimental results for native point defects (vacancies

and interstitials) in silicon yield intrinsic diffusion constants

that are several orders of magnitude smaller than existing

simulation results.1 Recent experimental studies cite

vacancy diffusivities [7] of around 10ÿ7±10ÿ8 cm2/s,

whereas atomic-scale simulations of point defect diffusiv-

ities [8±10] (admittedly, at much higher temperatures) pro-

duce values around 10ÿ4 cm2/s. However, recent EPR data

quotes values `̀ approaching LDA (local density approxima-

tion, a quantum mechanical description) values'' [11].

Results for interstitial diffusion show a larger discrepancy

between experiment and atomic-scale simulation. The clo-
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sest comparison for interstitial diffusion rates to date are

those of Privitera et al. [12] of `̀ no slower than 10ÿ10 cm2/s

with atomic-scale data of around 10ÿ6 cm2/s. While all the

sources of these discrepancies between experiment and

simulation are unclear, the existence in real materials of

vacancy and interstitial traps (present in real materials:

absent in virtual silicon) clearly plays a role. For instance,

carbon is known to be an interstitial trap [13]; its presence

retards the diffusion of boron (an `̀ interstitial diffuser'') in

Si. Oxygen has been suggested as a potential vacancy trap

[14]. It is possible that there are point defect±point defect

traps, but experimental veri®cation of such a suggestion

would be extremely dif®cult and has not yet been attempted.

Another factor in the discrepancy between experiment and

simulation must be the accuracy of the atomic models, but

this question is also unresolved and serves as a key motiva-

tion for the work to be presented here.

Previous atomic-level simulations of intrinsic point

defects in Si include studies [8,9,15,16] using the Stillin-

ger±Weber (SW) classical models [17], and ab initio Car-

Parrinello molecular dynamics calculations [10]. The SW

simulations, performed for comparatively large systems

(576 atoms) for `̀ long'' times (300 ps), provide accurate

estimates of the diffusion constants within the constraints

(i.e. the realism) of that model. The ab initio Car-Parrinello

results suggest similar order-of-magnitude estimates of the

diffusivities to the SW results, but the greater realism of the

model is hampered by the computational burden in calcu-

lating diffusivities even for small (64-atom) systems run for

short timescales (<20 ps). Thus one study was hampered by

the realism of the model and the other by constraints of size

and timescales.

We chose to use an approximate method, the tight-bind-

ing model [18], that is more accurate in energy determina-

tions (and hence slower) than the SW model, but faster

(though somewhat less accurate in measuring the energy

surface) than the ab initio method. The goal here was to

determine the diffusivities of vacancies and interstitials, DV

and DI, respectively, using a larger system size for longer

timescales than are possible using an ab initio method. In

this way, the order of magnitude of diffusivities from

another atomic-scale model could con®rm or deny the

apparent consensus of simulation results, and perhaps, shed

some light into the discrepancy of atomic-scale results with

experiments.

There has been one previous tight-binding simulation of

point defect diffusivities [19]. But there are several differ-

ences between the approach presented here and that of Tang

et al. [19]. The most important difference is that their tight-

binding model was due to Kwon et al. [20]. The parameter-

ization of the Kwon model was chosen to reproduce the

LDA results that show a preference for the formation of

(110) split interstitials over tetrahedral interstitials. In con-

trast, the model used here, that due to Goodwin, Skinner and

Pettifor (GSP) [21], was not ®tted to defect properties. In

consequence, GSP slightly favors the formation of tetrahe-

dral interstitials and hence is an interesting counterpoint

to the Kwon model. The relative balance of time spent in

the split and tetrahedral positions during interstitial diffu-

sion has never been identi®ed for either the Kwon or

GSP model. Hence it is still unclear how sound it is to

choose a tight-binding model based largely on its ability

to demonstrate the preferred location of the interstitial.

This point will be developed in the paper that follows.

Secondly, we provide here an order(N) linear-scaling algo-

rithm that is applicable to the study of defect diffusion. This

enables us to make some comments as to the effectiveness of

a fast O(N) code in comparison to traditional O(N3) tight-

binding codes.

Our paper is organized as follows. In Section 2 we

provide a summary of the simulation method we use.

Section 3 presents results for the diffusivities for vacancies

and interstitials, as well as a discussion of the interstitial

diffusion mechanism. Our conclusions are given in Sec-

tion 4. Appendix A describes the O(N) method used, includ-

ing the correction that we derived to give correct forces

around defects.

2. Simulation method

The method used here for simulations of self diffusion in

silicon is tight-binding molecular dynamics (TBMD) [22±

24]. This method involves making approximations from an

exact quantum mechanical description in order to obtain an

algorithm that is computationally tractable. It is much faster

than (almost exact) density functional methods, and more

accurate in terms of bonding and electronic structure than

classical potentials.

Even with the speed-up gained through the use of tight-

binding over density functional methods, large systems can

still take a long time to calculate for one time step (for

example, 216 atoms can take up to 20 min per time step on a

fast serial workstation). This is because the basic solution

method depends on calculating the eigenvalues and eigen-

vectors of the Hamiltonian matrix. Such a process scales as

O(N3), where N is the number of atoms in the system.

Recently, methods have been developed which make

approximations to improve the scaling of the solution

method to O(N) [25,26]. We use one such linear-scaling

method, developed by Goedecker and Colombo [27,28].

This particular O(N) method is explicitly parallelizable, and

allows us to take advantage of parallel computers such as the

IBM SP2. We review this method in Appendix A and also

present an addition to the method that we have developed to

handle a constant number of electrons, Nelec, as opposed to

constant chemical potential �, during force calculations.

This addition is essential in order to obtain accurate results

for the forces around defects, which are, in turn, necessary

for the correct description of diffusion in the tight-binding

model. Failure to include this new correction was found to

lead to errors of around 40% in the forces.
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To estimate the errors introduced due to the O(N) approx-

imations, we compared the formation energies of unrelaxed

vacancies and interstitials in 64�1 atom unit cells in the

O(N) method and by direct diagonalization of the Hamilto-

nian. For the vacancy, direct diagonalization at the ÿ point

yields a formation energy of 5.02 eV [29], while the O(N)

algorithm gives 4.94 eV (ÿ1%). For the interstitial, the

direct diagonalization result is 6.42 eV [29] and 6.48 eV

for the O(N) code (�1%). The error in these results is

certainly less than the systematic errors made in the tight-

binding approximation itself. Typical deviations of tight-

binding formation energies from ab initio results are on the

order of 1 eV. However, we expect energy differences (and

hence forces) to have smaller systematic errors.

For the tight-binding molecular dynamics runs, we used

an NVT (constant temperature) ensemble, and a system size

of 216�1 atoms (3�3�3 cubic unit cells) with periodic

boundary conditions. The choice of system size is a trade-

off between simulation time and ®nite size effects due to

defect±defect interactions. We have also performed some

shorter duration simulations (approximately 3 ps) for smal-

ler systems (64�1 atoms), and we ®nd similar results for the

diffusivities (although with much larger statistical errors).

We used a time step of 1.0 fs, which was found to give an

appropriate degree of energy conservation. The lattice

constant of the perfect solid is 5.42981 AÊ .

A system size of 216 atoms also reduces the amount of

systematic error in formation energies of defects when

compared to the same quantities in a 64-atom cell. Typical

differences between formation energies in a 216-atom cell

and a 64-atom cell are on the order of 0.1±0.3 eV. This is too

large a discrepancy to allow, since continuum process

simulators like ALAMODE require formation energies

accurate to about 0.1 eV. The differences between a 512-

atom cell and a 216-atom cell are smaller [29,30], though

the difference depends on the precision with which the

calculations are carried out (e.g. the number of k-points

used). The difference is small enough that, fortunately, the

smaller 216-atom result is acceptable.

The TBMD simulations consisted of running a system

with a vacancy or interstitial for an appropriate length of

time. We found that the diffusivity of a vacancy can be

reasonably accurately determined by two simulation run

times of around 30 ps (30 000 time steps) each, taking data

every 50 fs after an initial equilibration period of around

1 ps. The diffusivity of an interstitial at high temperature can

be reasonably accurately determined by two 30 ps runs too

(see Fig. 1). At lower temperatures, it would be prudent to

run the simulation for as long as practical. Such runs take

very considerable computational resources. Even using the

order(N) code on 16 processors of the IBM SP2, we needed

225 h of CPU time per processor to complete 180 ps. The

data were found to be insensitive to the period of the initial

equilibration time (in the range 100±1000 fs). Typical pho-

non frequencies in silicon are around 1±17 THz. This

corresponds to a timescale of approximately 50±1000 fs,

so we expect to be able to resolve lattice vibrations and

rearrangements using the chosen time slice of 50 fs.

Results were compiled for ®ve different temperatures for

both the vacancy and the interstitial: 9008C, 9758C, 10508C,

Fig. 1. Evolution of the diffusivity of an interstitial as a function of time. Results are averaged over two separate runs both at 12008C.
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11258C and 12008C. Each run at a particular temperature

was repeated for two different initial con®gurations of the

system, starting from an appropriate velocity distribution for

that temperature and a slightly distorted lattice. All the

vacancy runs were continued for two runs of 30 ps each.

The interstitial runs at the lowest four temperatures were

terminated after two runs of 30 ps. Two long simulations

were performed at 12008C; each run took 180 ps. Resource

constraints did not allow us to take all ®ve temperatures out

to 100 ps. But from Fig. 1, we estimate that the results after

two 30 ps runs are accurate at high temperatures. We shall

show that the TBMD results obtained here compare favor-

ably to other atomic-scale calculations.

The calculation of the diffusivities was made by parti-

tioning each run into a number of time intervals �t, and then

averaging the diffusion results over all these time origins.

Typically �t was 300 fs and 100 time origins were con-

sidered. The effect on the diffusivities of changing �t was to

increase the error. Larger �t values tended to have larger

statistical errors, while smaller �t values tended to give

larger deviations from Arrhenius behavior when several

temperatures were considered. This is likely to be due to

the smaller time intervals not giving the system time to

adequately sample the full energy surface on which the

atoms move in the diffusion process.

3. Results

The diffusion constant of a vacancy or interstitial was

calculated using the well known Einstein formula:

D � �~x�t� ÿ~x�0��
2

6t
; (1)

which is exact in the limit t!1, and where ~x�t� is the

location of the defect at time t. During these simulations

it is essential to keep track of the location of any vacancies

and/or interstitials present in the system. The criteria for

locating vacancies and interstitials are given in the sections

that follow. In these studies it was also necessary to deter-

mine when a defect crossed a periodic boundary. This is

because the calculation of the diffusion constant involves

knowing the absolute vector distance from the starting

point; some of our simulation runs were long enough that

this was an issue.

3.1. Diffusion of vacancies

The location of vacancies was accomplished by consider-

ing the distance of all the atoms from the perfect lattice sites.

If there is no atom within a cut-off distance, chosen here to

be a generous 1.0 AÊ , of a perfect lattice site, then we

determine this lattice site to be empty and hence the location

of a vacancy. This allowed us to keep track of the hopping of

the vacancies, and determine the number of hops in a

particular run.

Typically, a vacancy hop takes 150±200 fs, which is

consistent with phonon frequencies mentioned above. Dur-

ing this time, one of the four atoms nearest the vacancy will

move to occupy the lattice site of the vacancy, leaving a new

unoccupied lattice site. The typical number of vacancy hops

is in the range 30±45 per 30 ps for the temperatures we

considered.

Results for the diffusivities of vacancies and interstitials

are shown in Fig. 2. An Arrhenius plot of the relationship of

DV and DI, log10D versus 1/T showed a straight line for both

defects. This implies that the diffusion constants are given

by the form D�D0 eÿ�/kT, where � is a migration energy

barrier. The TBMD data for the vacancy diffusivity gave rise

to a migration energy, ��0.13 eV, and a prefactor

D0�4.1�10ÿ4 cm2/s. Previous statics calculations from

our group for the tight-binding model gave a migration

energy of approximately 0.1�0.25 eV [31]. Using Kwon's

model, Tang et al. [19] obtain a similar value of 0.1 eV.

We can compare these results to those obtained from SW

and ab initio simulations. The ab initio simulations give only

an order of magnitude estimate of D�10ÿ4 cm2/s for both

the vacancy and interstitial diffusivities [10]. Our results

(D�(1.3�0.3)�10ÿ4 cm2/s for 900±12008C) certainly

agree with this rough estimate. The SW simulations [9]

calculate a migration energy of 0.46 eV, and a prefactor

of 1.70�10ÿ3, with no estimate of the errors. While our

results are somewhat different from the SW results, they

still compare reasonably well given the different models

used. SW statics calculation [15,16] yield a migration

energy of 0.43 eV. From the prefactor and migration energy

in Tang et al.'s paper [19], the diffusivity was calculated as

being in the range 4.4�10ÿ5±5.4�10ÿ5 cm2/s for 900±

12008C.

3.2. Diffusion of interstitials

In order to calculate the diffusivity of an interstitial, the

perfect lattice was `̀ seeded'' with a single tetrahedral

interstitial. We followed the location of this atom as it

moves down the open channels formed by the diamond

cubic lattice. However, the presence of this interstitial can

lead to the formation of a h110i split interstitial (SI). The

original interstitial atom in this SI pair can sometimes share

a lattice site with a second, previously substitutional, atom

(as shown in Fig. 3). If an exchange event occurs, the second

atom (the one formerly occupying the substitutional site)

may be forced from its lattice site and become a new

tetrahedral interstitial. In such a case, it is important for

the code to recognize the change of identity of the interstitial

atom and track the new atom as it diffuses through the lattice

as if it were the original interstitial atom. Otherwise the

diffusivity will be calculated incorrectly. Of course, inter-

stitial exchange events can lead to substantial jumps in the

position of the active interstitial and hence lead to an

enhanced diffusivity. We observed that the time spent in

the split interstitial arrangement as compared to time spent
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wandering down the open channels of the Si lattice was

roughly 45% as a SI compared to 55% as a migrant

interstitial.

We observed many events during the simulations in

which formerly tetrahedral interstitials formed split inter-

stitials leading to the exchange of one interstitial atom for

another. We also observed the spontaneous formation of a

new interstitial, typically in the vicinity of an existing split

interstitial pair. On rare occasions we saw the direct trans-

formation of one split interstitial pair into another split

interstitial pair (i.e. a move involving three neighboring

atoms).

Table 1 shows the total number of such exchange events,

and the total number of split interstitials formed for the ®ve

temperatures studied. Data for the average of the two 30 ps

runs of the 12008C run were used in order to make a fair

comparison to the other temperatures. In many of the

dissociations of the SI pairs, the original interstitial atom

returned to the tetrahedral interstitial site. It is also inter-

esting to note that the frequency of exchange events and the

formation of SI pairs depend on the temperature. The

exchange mechanism plays a larger role at higher tempera-

tures, at least as predicted by the tight-binding model. A

temperature-dependent crossover in diffusion mechanism

Fig. 2. Diffusivities for vacancies and interstitials. The solid lines represent fits to the form D�D0 eÿ�/kT.

Fig. 3. The exchange event for diffusion of an interstitial. The interstitial atoms have been labeled with the letter I for clarity. (a) The initial interstitial,

looking down a h110i channel; (b) the h110i split interstitial formed from the original interstitial and a lattice atom; (c) the new interstitial in a different h110i
channel after the exchange event.
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for interstitials has been suggested by several researchers

(e.g. see [36]), and our results are suggestive that there

indeed might be processes important to diffusion at high

temperature that are `̀ frozen out'' at lower temperatures. We

are continuing these interstitial runs from 60 ps to over

100 ps to ensure that this temperature dependence of the

dominant mechanism is not related to the length of our runs.

Fig. 2 also provides insight concerning the nature of

interstitial diffusivity. Two things are immediately apparent:

DI is one to two orders of magnitude smaller than DV, and it

too conforms to an Arrhenius behavior, DI�D0 eÿ�/kT. This

data estimates the barrier to migration to be ��1.2 eV, and

the prefactor D0�0.165 cm2/s. Again we can compare these

results to those obtained from SW and ab initio simulations.

The previous ab initio simulations give only an order of

magnitude estimate of D�10ÿ4 cm2/s for the interstitial

diffusivities [10]. Our results are about an order of magni-

tude slower than the LDA results (D�0.2 to 1.5�10ÿ5 cm2/s

for 900±12008C). Results from the other tight-binding study

of interstitial diffusion (by Tang et al. [19]) are in reasonable

accord with our result (e.g. one can calculate their value for

D at 12008C to be 0.32�10ÿ5 cm2/s). The SW simulations

[9] calculate a migration energy of 0.94 eV, and a prefactor

of 1.76�10ÿ2. Tang's [19] results give a migration energy

barrier of 1.37 eVand D0�0.158 cm2/s, starting from a split

interstitial pair. We can also compare the interstitial results

to previous statics calculations. SW statics yield a migration

barrier of roughly 1.7 eV [15,16], while the tight-binding

statics give a barrier of 0.7�0.25 eV [31].

It is known that the GSP tight-binding model (as origin-

ally parameterized) and local density approximation (LDA)

methods disagree regarding the location of the most stable

Si self-interstitial. The LDA predicts the split interstitial to

be more stable, while the original GSP tight-binding model

shows a slight preference for the tetrahedral location. Given

this information, and the key role played by split interstitials

in interstitial diffusion as witnessed by the TBMD results in

this paper, we felt it was necessary to re-check the LDA

results. For this purpose, ab initio total-energy pseudopo-

tential calculations within the LDA were performed with a

plane-wave basis set [32±35]. The silicon pseudopotential

was norm-conserving with a cut-off radius of 1.80 bohr.

Defects were introduced into a 64-atom cubic unit cell with

65 and 63 atoms comprising the interstitial and vacancy

calculations, respectively. A plane-wave energy cut-off of

300 eV was suf®cient to converge the total energy of these

systems (by comparison with calculations performed at

600 eV) to 0.02 eV/atom, with defect formation energies

correspondingly converged to 0.02 eV. k-point selection

consisted of both 2�2�2 and 4�4�4 Monkhorst-Pack grids

with defect energies found to be converged to within 0.1 and

0.01 eV for the respective grid densities. An 8�8�8 grid

was utilized in a defect-free 64-atom silicon cell, and the

total energy differed by only 0.001 eV from the 4�4�4 grid

which indicates the well-converged status of the 4�4�4

grid. Ionic positions of all atoms in the cell were relaxed

using a conjugate gradient method with forces reduced

below 0.01 eV/bohr which lead to total energies converged

to better than 0.001 eV with respect to the force cut-off.

The precision provided by such a dense k-point grid and

force cut-off allows a much ®ner comparison between the

tetrahedral and split interstitials than virtually all previous

calculations. Results, accurate to within 0.02 eV with

respect to all of the numerical parameters, are shown in

Table 2. They con®rm the earlier LDA results indicating a

preference of the split interstitial location to that of the

tetrahedral one, but the difference is signi®cantly closer than

implied by the earlier LDA results. The new results show

only a weak preference between the two locations and

makes the de®ciencies in the tight-binding predictions less

critical. The energetic preference for T-interstitials in the

GSP tight-binding method does not appear to seriously

impede the formation of split interstitials, as evidenced

by the TBMD results shown here. The LDA preference

for split interstitials magni®es the likelihood that the TBMD

results here are correct in their implication of the importance

of SIs in interstitial diffusion mechanisms. We see no reason

to add any ad hoc energy band gap correction in the manner

employed by Tang et al. It is interesting to note that their

LDA values (before the band gap correction was added to

the formation energy of the T-interstitial) also con®rm the

close energetics between T- and split interstitials [42]. Use

of a generalized gradient correction would not affect the

formation energies given here (GGA would change the

Table 1

Split interstitial formation, averaged over two runs of 30 ps each

Temperature (8C) Si pairs formed Exchange events

900 1.5 0

975 0.5 0

1050 3.5 2.0

1125 5.5 1.5

1200 10.5 2.5

Table 2

Formation energies for vacancies and self-interstitials in Si from LDA and

tight-binding (TB) methods (values given in eV)

Approach (reference) Vacancy Tetrahedral

interstitial

Split

interstitial

LDA (Zhu [37]) ± 4.6a 3.2

LDA (BloÈchl et al. [10]) 4.1 ± 3.3

LDAb (Clark and Ackland [38]) ± Unstable 2.16

LDA (Tang et al. [42]) ± 3.5 3.2

LDA (Mercer et al. [43]) 3.6 ± ±

LDA (2�2�2 MP grid; this work) 3.57 3.30 3.16

LDA (4�4�4 MP grid; this work) 3.74 3.29�0.02 3.26�0.02

TB (steepest descents statics [39]) 3.15 4.7�0.3 5.0�0.3

a A 1.3 eV band gap `̀ correction'' was been added by the author, Zhu, to

the total energy calculated by the LDA calculation. The correction is

calculated as twice the difference between the real band gap for Si and that

predicted by LDA. See their paper for details.
b Note that a short cut-off (150 eV) was used by these authors. Cut-offs of

300±500 eV are typical and preferable.
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absolute values of the energies but would not alter the

energy difference needed for Ef).

4. Conclusions

We have calculated diffusivities for intrinsic defects in

silicon using tight-binding molecular dynamics. The order

of magnitude of the vacancy and interstitial diffusivities are

consistent with previous classical and ab initio dynamic

simulations and with statics results. Our calculations elim-

inate any serious concern that limitations of realism of the

SW results or brevity of the CP results have contributed to

the high values obtained for diffusion of intrinsic defects in

Si. Thus, all atomic-level simulations of diffusivities per-

formed to date remain signi®cantly larger than experimental

results. Since computer `̀ silicon'' is a perfectly clean and

defect-free system (apart from the single seeded defect) we

believe that this points to the importance of trapping

mechanisms in real materials.

Given this single unresolvable issue, we contend that

intrinsic diffusivities of vacancies and interstitials are

remarkably fast. Vacancies diffuse signi®cantly faster than

interstitials (by one to two orders of magnitude) in the

temperature regime 900±12008C. We have also quanti®ed

the mechanism for interstitial diffusion in terms of its two

components: drift down the open (100) channels and for-

mation of h110i split interstitials. At around 12008C, the

interstitial spends roughly 55% of its time as a wandering T-

interstitial and around 45% of its time bound up as a h110i
split interstitial. Within a tight-binding description of the

interatomic forces, the dominant mechanism changes from

one of single interstitial drift at low temperatures to one of

exchange processes with lattice atoms through intermediate

h110i split interstitials at higher temperatures. New LDA

results con®rm the importance of the split interstitial defect

while showing that the difference between T- and split

interstitial formation energies is small.
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Appendix

O(N) tight-binding and constant N forces

A.1 Order(N) tight-binding

In this section, we summarize the O(N) method that we

use for our calculations. Further details can be found in

[27,28].

In the tight-binding method, the total energy can be

written as

Etot � Ekin � Epot � Ebs: (A.1)

The method begins by rewriting the total energy in equation

as

Etot � Ekin � Epot �
X

i

"if
"i ÿ �
�

� �
; (A.2)

where the function f is de®ned as

f �x� � 1

1� ex
: (A.3)

This is the Fermi function, and � plays the role of a ®ctitious

electron temperature, and � a chemical potential. We would

like to emphasize that this is not the actual temperature, but

rather an approximation that allows us to obtain an O(N)

method.

The goal is to calculate the electron band-structure energy

contribution without having to diagonalize the Hamiltonian

H. To this end we de®ne the Fermi matrix:

F � f
H ÿ �
�

� �
: (A.4)

Using this, the band-structure energy is given by

Ebs �
X

i

"if
"i ÿ �
�

� �
� Trace�HF� �

X
n�

h�n�jHFj�n�i:

(A.5)

where the |�n�i are the atomic orbital basis functions.

Next, we approximate the Fermi matrix as a polynomial

in H, F�p�,�(H). We use for this polynomial a series of

Chebychev polynomials Tm(H):

p�;� �H� � c0��; ��
2

I �
Xnpl

m�1

cm��; ��Tm�H�: (A.6)

The Chebychev polynomials are de®ned by the recursion

relations:

T0�H� � I

T1�H� � H

Tm�1�H� � 2HTm�H� ÿ Tmÿ1�H�:
(A.7)

We can use these relations to calculate one column of

Tm�H�; jtm
n�i:

jt0
n� � j�n�i
jt1

n� � Hj�n�i
jtm�1

n� i � 2Hjtm
n�i ÿ jtmÿ1

n� i:
(A.8)

From here we can calculate a `̀ localized orbital'':

j fn�i � Fj�n�i � p�;��H�j�n�i � c0��; ��
2

jt0
n�i

�
Xnpl

m�1

cm��; ��jtm
n�i: (A.9)
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The localized orbital |fnai decays as we move away from the

nth atom. In semiconductors this decay is exponential. Once

we have this localized orbital, one further matrix-vector

multiply, one dot product, and a sum over states gives the

band-structure energy.

So far, we have presented an approximate method for

calculating the band-structure energy. How long does this

process take? Each matrix-vector multiplication takes an

amount of time that scales as N2
atoms to perform, and there are

approximately npl matrix-vector multiplications, so the time

t for one step in the computation scales as t � N2
atomsnpl. As

written, the algorithm is O(N2). In order to obtain an O(N)

algorithm, we need to introduce a further approximation.

Because of the exponential decay of the localized orbital

|fnai, we can introduce a cut-off region beyond which we do

not perform calculations when doing the matrix multiplica-

tions necessary to generate F. Instead of the matrix multi-

plications taking time t � N2
atoms, they take NatomsNloc,

where Nloc is the typical number of atoms in the cut-off

region, which is ®xed as we increase Natoms. Doing this

yields a linear-scaling algorithm with computation time of

t�NatomsNlocnpl.

An additional advantage of this algorithm is that it

can be used ef®ciently on parallel computers. To see this,

note that one sequence of columns jtm
n�i; m � 0; . . . ; npl

is completely independent of another sequence

jtm
n0�0 i; m � 0; . . . ; npl. We can then calculate the localized

orbitals for different nuclei on different processors of a

parallel computer. The time to compute all the necessary

orbitals is reduced by a factor of 1/Nprocessors.

A.2 Force correction for constant Nelec

As presented in [27,28], the O(N) algorithm calculates

forces assuming a constant chemical potential. We have

found that in order to get correct forces around defect

structures it is important to calculate these forces assuming

a constant number of electrons. This section gives a method

we have developed for doing such a calculation.

We want to calculate the forces from the band-structure

energy Ebs given in (Eq. (A.5)), assuming a constant num-

ber of electrons. The total number of electrons N in the

system can be calculated from

N �
X

i

f
"i ÿ �
�

� �
� Tr�F�: (A.10)

We are particularly interested in the forces on one atom n

located at ~Rn due to the electron band-structure energy. We

can write the force as

~f n � ÿ
@Ebs

@~Rn

� ÿTr
@H

@~Rn

F � H
@F

@~Rn

� �
; (A.11)

where we have used the Hellmann±Feynman theorem [40]

to write �@=@~Rn�Tr�HF� � Tr��@=@~Rn�HF�. Taking the

derivative for F yields

@F

@~Rn

� f 0
H ÿ �
�

� �
1

�

@H

@~Rn

ÿ @�

@~Rn

� �
; (A.12)

where in our approximation

f 0
H ÿ �
�

� �
1

�
� p0�;��H� (A.13)

This gives a force

~f n�ÿTr
@H

@~Rn

�p�;� �H� � Hp0�;��H��
� �

� @�

@~Rn

Tr Hp0�;� �H�
h i

:

(A.14)

In the constant chemical potential version of the algorithm,

the last term in the previous equation is zero. However, we

want to consider the case where the number of electrons is

assumed constant for obtaining the force. This means that

@N

@~Rn

� Tr
@F

@~Rn

� �
� 0; (A.15)

or substituting Eq. (A.13),

Tr p0�;��H�
@H

@~Rn

ÿ @�

@~Rn

� �� �
� 0: (A.16)

We can now solve for the derivative of the chemical

potential:

@�

@~Rn

� Tr�p0�;� �H��@H=@~Rn��
Tr�p0�;��H��

: (A.17)

Substituting into Eq. (A.14) gives the ®nal force equation

that we use

~f n � ÿTr
@H

@~Rn

p�;� �H� � Hp0�;� �H�
� �� �

� Tr p0�;��H�
@H

@~Rn

� �
Tr�Hp0�;��H��
Tr�p0�;��H��

: (19)

These traces are then calculated in exactly the same manner

as those for the band-structure energy, described earlier in

Section A.1 of this appendix.

Another constant Nelec force calculation for this algorithm

has been mentioned in [41], although to our knowledge the

speci®cs of this algorithm have not been published.
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